
Imperial College London

Department of Electrical and Electronic Engineering

Real-time Obstacle Detection for High-speed Railways Using Deep
Neural Networks Based on FPGAs

Author:
Tsz-hang Wong
Haoran Wu

Supervisor:
Dr James J. Davis

UROP Report

September 24, 2022



Abstract
With the increasing speed of railways, an obstacle detection method with extremely low latency is
required to ensure the train has enough braking distance to stop. The application of convolutional
neural networks (CNNs) is proposed as one of the potential and viable methods. Although there
are various CNN-based algorithms for real-time obstacle detection, they often result in large models
or high computational complexity which are not regarded as efficient implementations. Therefore,
we focusses on the construction of neural network hardware accelerators on FPGAs, exploiting
various optimization techniques and strategies.

Introduction & Preliminary
You only look once(Yolo), a real-time object detection system, was elected as the baseline system
for our application. It surpasses other systems like R-CNN in terms of computational complexity
since each prediction for a single image is only required to go through a single network evaluation
once, unlike other systems which require thousands of recursions. This makes it 1000× faster than
R-CNN and 100× faster than Fast R-CNN, reaching the state-of-art performance for real-time
object detection [1]. In our framework, we started off by using Tiny-Yolov3, which is the simplified
version of Yolov3 with fewer convolutional layers in its backbone classifier compared with Yolov3,
aiming to reduce the computational complexity.

To make the system process image even faster without exerting a negative impact on its accuracy
and accelerator scalability, we adopted the backbone classifier with the Residual Binary Network
(ReBNet) architecture, a binary neural network with multiple levels of residual binarization [2].

In comparison with the general binarized models provided for image classification, the yolov3 used
multi-scale prediction classifiers, involving new operations like skip connections, concatenations,
and resizing that were previously not supported by the RebNet model in terms of either hardware
or software [1]. In more detail, after the darknet [1], the output tensor was cloned into two tensors
with one continuing to go deeper into the network while the other one was preserved for later use.
These two tensors were then concatenated together at the nearest end of the network.

As area efficiency also comes into concern, certain layers were then changed to the Lookup Table
Network (LUTNet) architecture, an FPGA-based neural network accelerator using native LUTs as
inference operators. The LUTNet model introduces nonlinearity to the network by replacing the
main function in CNN with function g

(
x̃(n)

)
where x̃ are any K components of the original input

vector x as follows:

y = f

(
N∑

n=1

ωnxn

)
(1) y = f

 Ñ∑
n=1

gn

(
x̃(n)

) (2)

with each g
(
x̃(n)

)
implemented in a LUT [3]. Therefore, far heavier pruning, the removal of

low weighted network connections, can be done by taking benefit from the nonlinear Boolean
functions and flexibility of the LUTs, resulting the size of the adder tree (Ñ ≪ N) for summation
and achieving significant area saving [3]. For demonstration purposes, we have chosen to exploit
the K=4 case, where K represents the number of inputs for each LUT. To enable fast convergence
and avoid overfitting, the weights were initialized in the way proposed by [3], setting the start
point of the weight to the pre-trained model by equating the non-pruned with the interpolating
function of g

(
x̃(n)

)
. The model means average precision (mAP), which is a parameter representing

the quality of detection [1], with the combined 4-LUTs models was shown to be approximately the
same.

By combining and utilizing all these frameworks provided, we constructed a 4-LUT-based Yolov3
model and its corresponding hardware FPGA-based neural network accelerators.

2



Related Work

Our working progress is demonstrated in the following flow chart. Due to time limitations, we did
not complete all the tasks we planned. We focused on training our RebNet Model and implementing
it onto the FPGA board. The uncompleted tasks are linked by a dashed arrow in the chart. Our
detailed work is discussed below.

Pretrain Model on
COCO Dataset

Transfer Training
with RailSem Dataset

Generate Lut-
Net Dummy Prunning Vivado HLS

Testbench
LUTNet Initialization

LUTNet Training

Vivado HLS Lut Array
Generation

RTL

Bitstream Generation

Figure 1: Task Flow Chart

• Training Process

With regard to the training dataset, Railsem Dataset is selected as the main resource for neural
network training. However, due to the lack of the dataset for specific classes within this database,
the accuracy of the detection does not meet our requirements. We improved this by conducting
transfer learning. The weight was initially trained with the COCO dataset and then transferred to
the training with the RAILSEM dataset. During the later training, low level layers (layer index:
0 to I) were fixed to preserve low-level features extracted from the COCO for the first few epochs.
The fixed layers were then gradually released to be trainable along with the training process. After
experimenting with different index I and how layers are being released, one satisfying result was
obtained by setting I=5 and with releasing order in Appendix(A). Apart from that, some trials in
modifying the model’s hyperparameter involving doubling channels, adding bias for certain layers,
and adding an l2 regularizer [3], were carried out but had little effect on improving the accuracy.

The initial training framework we used for the binaried network can be divided into two steps.
Firstly, the model was trained with real number weights clipped to [-1,1]. This forces the weight to
scatter around 1 and -1. Furthermore, as long as the loss was minimized, the weights could then
be binarized to -1, 1 with a straight-through estimator added for further training. However, with
quantized weights, the model can only output quantized values, causing 0 widths or 0 height in
inferred bounding boxes. This leads to undefined behaviour in calculating the intercept and union
(IOU) loss, outputting NaN. To address this problem, we simply substituted the inferred height
and width with the minimum value observed from the real number model.

This method is viable based on the assumption that the model is already fitting the data quite well,
otherwise, this substituting operation might cause the gradient descent to the wrong direction or
even worse, lead to gradient explosion. Hence, to preserve the model’s accuracy as much as possible
before and after binarization, two quantization values β, α instead of -1,1 could be found and used,

3



such that the total standard variance of difference in weights before and after quantization reaches
a minimum. After the model converged, the β and α could always be converted back to -1 or 1 by
scaling up by a factor S or adding an offset by O along with the residual level-wise scaling factors
γ in ReBNet changed to γ/S − γ ∗ O/S due to linearity. This also leads to faster convergence,
since the starting point is closer to the global minima. In our case, we observed the weights are
scattered more around 0 hence we tried out setting S to be 0.5 and O to be 0 and that was enough
for the model to converge.

• Configuration Modification
The related current research mainly focussed on the realization of image classification rather than
object detection on an FPGA board [3]. To adapt our chosen TinyYolov3 model onto the FPGA,
we did the following modifications based on the provided RebNet code.

To begin with, we added several padding options for each layer into the hardware library to meet
the software model description. Since data transfers between layers can only be a combination
of residual levels’ value, pixels with 0 value can not be parsed. We added a signal to record the
current output pixel number. The sliding window inputs of any output pixels located at the image
edges would enter a padding check before performing the XNOR operation. For example, one
pixel with all its channels having values 0 are determined as a padding pixel and excluded from
the PopCount operation (adding half of the layer’s fanins to the Popcount unit).

New layers were designed to cope with concatenation followed by a convolution operation. Since
the inputs needed to be concatenated together come from two different layers, they share different
parameters like fanins, residual weights, SIMD, and PE leading to different coefficients used in
MVTU. Hence, the convolution was performed separately with the input first and the two accu-
mulated results were then simply summed up and passed through a single threshold (sum of the
two thresholds) to achieve the same concatenation effect.

Apart from that, we also implemented a max pooling layer supporting stride one. The input matrix
was first half padded with the padding option then values in any 2 x 2 windows of the feature maps
are obtained by going through SWU with stride 1. After selecting the max value within the results,
we write it to the output. A 2 × resizing unit is also implemented to meet the requirement of the
model.

In terms of the output of the network, we modified the binarized convolution layer by removing
its activation, to provide the non-binarized result. It enables us to decode the output of a neural
network.

• Testbench
To debug our model on the hardware side, following the procedure suggested by an MSC student,
we first extracted the feature map tensor before and after the specific layer, we want to test on the
software side and save them into a set of txt files. Then we let Csim read those files and transfer
them into streaming input of the specific layers in HLS hardware. The results obtained on both
sides are then compared to verify the functionality of the layer.

Experiment Result
Due to the fact that training such a large model is time-consuming, we capped the training epochs
to 35. Epoch represents the number of iterations when an entire dataset is passed forward and
backward through the neural network. Also, we noticed that since the model was quantized, it
performs badly in detecting small objects. Therefore, classes of small objects such as poles or
classes with limited training data were excluded from the RAILSEM dataset before training for
better accuracy.

According to the experiment, models with double channels generally exhibit much higher accuracy
than a single one. However, since the doubling channel would cover twice memory, due to the
limitation of GPU memory, training doubled channel would lead to GPU resource exhaustion,
despite the fact that we have decreased batch size to one and use multiple GPU to train the model.
Apart from that, we found that using bias in the output convolutional layer has little effect on the

4



training result. Therefore, considering the complexity and scalability of our model, we finally take
a single channel without adding bias to proceed with our implementation on the hardware side.

In terms of binarizing our models, according to the result, the accuracy of the model dropped by
50%, which is still within our expectations. That is because binarization would largely affect the
accuracy of the model.

Table 1: Training Result
Model Architecture Epoch 25 mAP Epoch 35 mAP

Full Precision Single Chan 7.00% (14 classes) 10.00% (14 classes)
Full Precision Single Chan With Bias 10.00% (14 classes) 18.00% (8 classes)

Full Precision Double Chan 16.40% (8 classes) 17.70% (8 classes)
Full Precision Double Chan With Bias 10.00% (8 classes) 16.50% (8 classes)

Binarized Single Chan N/A 5.34% (7 classes)
Binarized Double Chan N/A 11.00% (7 classes)

Reflective Component
Through the nine weeks of research in the field of BNN, we are able to have a brief understanding
of its principles. We also learned how to train and verify our models. We had the opportunity to
investigate and tried out various methods to optimize the training result. In the training process,
we managed to tackle many challenging problems like gradient explosion.

Apart from that, in terms of the hardware side, we spent a long time modifying and debugging the
provided BNN repositories to fit our model, which enables us to think in the hardware perspective
and also design hardware with Vivado HLS. Also, to perform testing on our model, we investigated
an MSC student’s testbench and also adopted it to our model. We learned how to write a testbench
for hardware with Csim.

In the future, we are considering implementing LUTNet on the hardware side. Apart from that,
we want to try a better neural network model with higher accuracy in image detection.

In conclusion, we believe that what we learned through this UROP built a concrete foundation in
the field of BNN and FPGA for us, which would be really helpful in our future work. We both
developed great interest in this field and are willing to carry on our study in this field in future
work.

5



Reference

[1] W. Gai, Y. Liu, J. Zhang, and G. Jing, “An improved tiny yolov3 for real-time object
detection,” Systems Science & Control Engineering, vol. 9, no. 1, pp. 314–321, 2021. [Online].
Available: https://doi.org/10.1080/21642583.2021.1901156

[2] M. Ghasemzadeh, M. Samragh, and F. Koushanfar, “Rebnet: Residual binarized neural
network,” 2017. [Online]. Available: https://arxiv.org/abs/1711.01243

[3] E. Wang, J. J. Davis, P. Y. K. Cheung, and G. A. Constantinides, “LUTNet: Learning FPGA
configurations for highly efficient neural network inference,” IEEE Transactions on Computers,
2020, to appear.

6

https://doi.org/10.1080/21642583.2021.1901156
https://arxiv.org/abs/1711.01243

